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Abstract
We study the effect of small decoherence in continuous-time quantum walks
on long-range interacting cycles, which are constructed by connecting all
the two nodes of distance m on the cycle graph. In our investigation, each
node is continuously monitored by an individual point contact, which induces
the decoherence process. We obtain the analytical probability distribution
and the mixing time upper bound. Our results show that, for small rates of
decoherence, the mixing time upper bound is independent of distance parameter
m and is proportional to inverse of decoherence rate.

PACS numbers: 03.65.Yz, 03.67.−a

1. Introduction

Random walks on graphs have broad applications in various fields of mathematics, computer
science and natural sciences, such as mathematical modeling of physical systems and simulated
annealing [1]. The quantum mechanical analog of the random walks on complex networks
has been studied with respect to the localization and delocalization transition in the presence
of site disorder [2–4]. Quantum walks (QWs) have been largely divided into two standard
variants, the discrete-time QWs (DTQWs) [5, 6] and the continuous-time QWs (CTQWs) [7].
The DTQWs have been investigated on trees [8], on random environments [9], for single and
entangled particles [10] and also in [1, 11, 12]. In the recent years, the CTQWs have been
studied on the n-cube [13], star graph [14, 15], small-world network [16], quotient graph [17],
line [18–20], dendrimer [21], distance regular graph [22], circulant Bunkbeds [23], odd graph
[24] and decision tree [25, 26].

In all of these cited works it has been supposed that we have a closed quantum system
without any interaction with its environment. Firstly, Kendon and Tregenna considered the
effect of decoherence in quantum walks in ‘Decoherence can be useful in quantum walks’ [27].
By numerical observation, they found that a small amount of decoherence can be useful to
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(a) (b)

Figure 1. Long-range interaction cycles G(8; 3) and G(10; 4)

decrease the mixing time of discrete quantum walks on cycles. Then decoherence in quantum
walks has been studied on line [28], on circulant [29] and on hypercube [29]. In ‘Mixing
and decoherence in continuous-time quantum walks on cycles’ [30], an analytical counterpart
to Kendon and Tregenna’s result for the continuous-time quantum walk on cycles has been
provided. Its results show that, for small rates of decoherense, the mixing time decreases lin-
early with decoherence while for large rates of decoherence, the mixing time increases linearly
toward the classical limit. Moreover, for the middle region of decoherence rates, the numerical
data confirm the existence of a unique optimal rate in which the mixing time is minimal.

In this paper, we consider the effect of decoherence in continuous-time quantum walks
on long-range interacting cycles (LRICs) as the extensions of the cycle graphs. LRICs
are constructed by connecting all the two nodes of distance m on the cycle graph (nearest-
neighboring lattice). A detailed description of the network structure will be given in the next
section. Numerical analysis of CTQWs on LRICs has been provided in ‘Coherent exciton
transport and trapping on long-range interacting cycles’ [3]. We take a small amount of
decoherence into account and by analytical technique show it can decrease the mixing time in
continuous-time quantum walks on LRICs.

For this end, we use the Gurvitz model [31]. In this model, each vertex is monitored
by a corresponding point contact induced by the decoherence process. We calculate the
analytical probability distribution and then obtain the mixing time upper bound for small
rates of decoherence. We show that it is independent of the distance parameter m and is
proportional to the inverse of decoherence rate. Our paper is structured as follows: after a
detailed description of the network structure LRICs in section 2, we study continuous-time
quantum walks over the underlying structures in section 3. In section 4 we consider the effect
of decoherence in CTQWs on LRICs and in section 5 we focus on the decoherent CTQWs
when the decoherent rate is small. In section 6, we define the mixing time and obtain its upper
bound. Finally, in section 7 the conclusions are presented.

2. Structure of LRICs

To construct long-range interacting cycles (LRICs), we can use the following rules. First, we
construct a cycle graph of N nodes where each node is connected to its two nearest neighbor
nodes. Second, all the two nodes of distance m on the cycle graph are connected by additional
bonds. LRICs are denoted by G(N, m) where N is the network size and m is the long-range
interaction parameter. LRIC is a one-dimensional lattice with periodic boundary conditions
and all nodes of the networks have four bonds [3]. The structures of G(8, 3) and G(10, 4) are
illustrated in figure 1.
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3. CTQWs on LRICs

CTQWs on LRICs are obtained by replacing the Hamiltonian of the system by the classical
transfer matrix, i.e. H = −T [25]. The transfer matrix T relates to the Laplace matrix by
T = −γA, where for simplicity we assume the transmission rates γ of all bonds to be equal
and set γ = 1 in the following. In the Laplace matrix A, nondiagonal elements Aij equal to 1
if nodes i and j be connected and 0 otherwise. The diagonal elements Aii follow as Aii = −ki

that ki is the degree of vertex i. The basis vectors |j 〉 associated with the nodes j of the graph
span the whole accessible Hilbert space. Then the Hamiltonian matrix H of G(N, m) (m � 2)

takes the following form:

Hij = 〈i|H |j 〉 =

⎧⎪⎪⎨
⎪⎪⎩

−4, if i = j ;
1, if i = j ± 1;
1, if i = j ± m;
0, otherwise.

(1)

The Hamiltonian acting on the state |j 〉 can be written as

H |j 〉 = −4|j 〉 + |j − 1〉 + |j + 1〉 + |j − m〉 + |j + m〉, (2)

which is the discrete version of the Hamiltonian for a free particle moving on a lattice. It is
well known in solid-state physics that the solutions of the Schrödinger equation for a particle
moving freely in the regular potential are Bloch function [32, 33]. Thus, the time-independent
Schrödinger equation is given by

H|�θ 〉 = Eθ |�θ 〉, (3)

where the eigenstates |�θ 〉 are Bloch states and can be written as a linear combination of states
|j 〉 localized at nodes j ,

|�θ 〉 = 1√
N

N∑
j=1

e−iθj |j 〉. (4)

The projection on the state |j 〉 is �θ(j) = 〈j |�θ 〉 = 1√
N

e−iθj , which is nothing but the Bloch

relation �θ(j + 1) = e−iθ�θ(j) [32, 33].
Now the energy is obtained from equations (3) and (4) as

Eθ = −4 + 2 cos(θ) + 2 cos(mθ), (5)

for j = 0, 1, . . . , N − 1. The classical and quantum transition probabilities between two
nodes can be written as

Pk,j (t) =
∑

θ

e−tEθ 〈k|�θ 〉〈�θ |j 〉, (6)

πk,j (t) = |αk,j (t)|2 =
∣∣∣∣∣
∑

θ

e−itEθ 〈k|�θ 〉〈�θ |j 〉
∣∣∣∣∣
2

. (7)

4. The decoherent CTQWs on LRICs

4.1. Gurvitz’s model

To analyze the decoherent continuous-time quantum walks on LRICs, we use the analytical
model developed by Gurvitz [31, 34]. In this model, every node is regarded as a quantum
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(a) (b)

Figure 2. (a) Point contact detector j monitoring the electron in dot j and (b) point contact j in
the presence of the electron in dot j + 1.

dot. Thus, LRIC is represented by a set of the identical tunnel-coupled quantum dots (QDs).
The walks are done by an electron initially placed in one of dots. A ballistic point contact
(PC) is placed near every dot that is taken as a noninvasive detector. We assume that all
point contacts are identical. Also, they are placed far enough from quantum dots so that
the tunneling between them is negligible. Moreover, for simplicity, we consider electrons
as spinless fermions [30]. Each PC continuously monitors the attached quantum dot. This
measurement process induces decoherence to electron walks as is shown in figure 2. Firstly,
we study the simple quantum walks with the Hamiltonian [35]

H0 = −
∑
ij

�ij (t)
(
ĉ
†
i ĉj + ĉi ĉ

†
j

)
+

∑
j

εj (t)ĉ
†
j ĉj

≡ −
∑
ij

�ij (t)(|i〉〈j | + |j 〉〈i〉) +
∑

j

εj (t)|j 〉〈j |, (8)

where |j 〉 = ĉ
†
j |0〉 denotes the state that the electron is placed at dot j . �ij is the hopping

amplitude between dots i, j and εj (t) is the on-site dot energy. We assume the constant
hopping amplitude between linked dots and no on-site terms. For simplicity, we renormalize
the time, so that it becomes dimensionless [36]. Hence, the Hamiltonian has the form

H0 = 1

4

N−1∑
j=0

(
ĉ
†
j+1ĉj + ĉ

†
j ĉj+1 + ĉ

†
j+mĉj + ĉ

†
j ĉj+m

)
. (9)

The tunneling Hamiltonian HPC,j describing electron transport in the point contact j can
be written as [31, 36]

HPC,j =
∑

l

El,j â
†
l,j âl,j +

∑
r

Er,j â
†
r,j âr,j +

∑
lr

	lr,j

(
â
†
r,j âl,j + H.C.

)
. (10)

Here, â
†
l,j (âl,j ) and â

†
r,j (âr,j ) are the creation (annihilation) operators in the left and right

reservoirs of detector j , respectively, and 	lr,j is the hopping amplitude between the states l
and r of detector j . The presence of an electron in the left dot results in an effective increase
of the point-contact barrier (	lr → 	l,r + δ	l,r ), and we can represent the interaction term as
[31, 36]

Hint,j =
∑
l,r

δ	lr,j ĉ
†
j ĉj

(
â
†
l,j âr,j + H.C.

)
. (11)
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Thus, the entire system Hamiltonian can be described by

H = H0 +
N−1∑
j=0

HPC,j + Hint,j . (12)

We suppose for simplicity that the hopping amplitude of j th point contact is weakly
dependent on the states l and r, so that it can be replaced by its average value, (	lr,j � 	̄) and
δ	lr,j � δ	̄. The occupation of the quantum dot can be measured through the variation of the
detector current �I = I2 − I1 where I1 = e2π	̄2ρl,j ρr,jVj is the detector current when the
electron occupies the first dot, figure 2(a), and I2 = e2π(	̄2 + δ	̄)2ρl,j ρr,jVj is the current
flowing through the detector in the presence of the electron in the second dot, figure 2(b). The
densities of states in the left and right reservoirs of detector j are ρl,j and ρr,j respectively and
the voltage bias is the variation of the chemical potentials in the left and right reservoirs in a
detector, i.e. Vj = μl,j − μr,j [34]. Now, we are ready to write the Schrödinger equation for
the entire system with Hamiltonian H. The effect of the detector on the quantum dot can be
obtained by tracing out the detector states. Gurvitz has shown, for a double dot and detector
together (figure 2), that the Schrödinger equation results in the evolution of a reduced density
matrix traced over all states of the detector which coincides with the Bloch-type rate equations
[31, 34]. These equations are as follows:

ρ̇j,j = i	0(ρj,j+1 − ρj+1,j ),

ρ̇j+1,j+1 = i	0(ρj+1,j − ρj,j+1),

ρ̇j,j+1 = iεjρj,j+1 + i	0(ρj,j − ρj+1,j+1) − �

2
ρj,j+1,

(13)

where εj = Ej − Ej+1 and 	0 is the coupling between the left and right dots. Also,
ρj,j+1(t) = ρ∗

j+1,j (t) are the off-diagonal reduced density matrix elements and the diagonal
terms of this density matrix ρj,j (t), ρj+1,j+1(t) are the probabilities of finding the electron

in the j th dot and in the (j + 1)st dot, respectively. Moreover, � = (√
I1
e

−
√

I2
e

)2 Vj

2π
is the

decoherence rate due to continuous observation with a noninvasive detector [31, 34]. Applying
this model to our system results in

d

dt
ρj,k(t) = i

4
[−ρj−1,k − ρj+1,k − ρj−m,k − ρj+m,k + ρj,k−1

+ ρj,k+1 + ρj,k−m + ρj,k+m] − �(1 − δj,k)ρj,k. (14)

Our subsequent analysis will focus on the variable Sj,k defined as [30]

Sj,k = ik−jρj,k. (15)

Substituting equation (15) into equation (14), we have

d

dt
Sj,k = 1

4
[−Sj−1,k + Sj+1,k − i−m+1Sj−m,k − im+1Sj+m,k − Sj,k−1

+ Sj,k+1 + im+1Sj,k−m + i−m+1Sj,k+m] − �(1 − δj,k)Sj,k. (16)

5. Small decoherence

We consider the coherent continuous-time quantum walks when �N 	 1. Equation (16) can
be rewritten as the perturbed linear operator equation [30]

d

dt
S(t) = (L + U)S(t), (17)

5
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where the linear operators L and U are

L
(μ,ν)

(α,β) = 1
4 [−δα,μ+1δβ,ν + δα,μ−1δβ,ν − i−m+1δα,μ+mδβ,ν − im+1δα,μ−mδβ,ν

− δα,μδβ,ν+1 + δα,μδβ,ν−1 + im+1δα,μδβ,ν+m + i−m+1δα,μδβ,ν−m] (18)

U
(μ,ν)

(α,β) = −�(1 − δα,β)δα,μδβ,ν, (19)

where L is an N2 ×N2 matrix and L
(μ,ν)

(α,β) is the entry of L indexed by the row index (μ, ν) and
the column index (α, β). Also, U has the same behavior. By the above substitution, we obtain

d

dt
Sα,β =

N−1∑
μ,ν=0

(
L

(μ,ν)

(α,β) + U
(μ,ν)

(α,β)

)
Sμ,ν, (20)

where 0 � α, β, μ, ν � N − 1. The initial conditions are

ρα,β(0) = Sα,β(0) = δα,0δβ,0. (21)

To obtain the zero-order solution of equation (20), we require an expansion on the
eigenvectors of L

(μ,ν)

(α,β) or

N−1∑
μ,ν=0

L
(μ,ν)

(α,β)V
(k,l)

(μ,ν) = λ0
(k,l)V

(k,l)

(α,β), (22)

where 0 � k, l � N − 1. After some algebra with equation (22), one can obtain

λk,l = i

[
sin

(
π(k + l)

N

)
cos

(
π(k − l)

N

)]

+ im
[

sin

(
πm(k + l)

N

)
cos

(
πm(k − l)

N

)]
(23)

and

λk,l = i

[
sin

(
π(k + l)

N

)
cos

(
π(k − l)

N

)]

+ im+1

[
sin

(
πm(k + l)

N

)
sin

(
πm(k − l)

N

)]
, (24)

when m is an odd and even number, respectively. Eigenvectors of L are given by

V
(k,l)

(μ,ν) = 1

N
exp

(
2π i

N
(kμ + lν)

)
. (25)

Now, we consider eigenvalues of the unperturbed linear operator L (equations (23) and
(24)) carefully. We investigate the important degeneracies of the eigenvalues λk,l of L that
lead to non-zero off-diagonal contribution of U. Firstly, due to symmetry of equation (23),
we have λk,l = λl,k , while their eigenvectors (equation (25)) are clearly different. (Note that
in equation (24) there is no such symmetry.) The second subset of degenerate eigenvalues
appears when we replace k + l ≡ 0(modN) in equations (23) and (24). One can see that the
corresponding eigenvectors are not the same. The third subset of the degenerate eigenvalues
reveals when we set k = l. First-order correction terms are given by the diagonal elements of
equation (19) calculated on eigenvectors of equation (25). For the first subset of degenerate
eigenvalues, they are equal to −� (N−2)

N
. By introducing this eigenvalue perturbation to each

pair of λ(k,l) with k 
= l and k + l 
= N , the degeneracy of the first subset is removed. The
degeneracy of the second subset is absent in our case since their eigenvectors are anyway
excluded from the final solution by the initial condition [36]. In our discursion, there is not
the degeneracy of the third subset since U is diagonal over the corresponding eigenvectors
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[30]. For these eigenvalues, the correction terms are −� (N−1)

N
. Thus, as mentioned in

[30, 36], equation (20) can be expressed in terms of eigenvectors of equation (25):

Sα,β(0) = δα,β

N
+

1

N2

N−1∑
k,l=0

(1 − δk+l,0 − δk+l,N ) exp

[
2π i(kα + lβ)

N

]
. (26)

The full solution is of the form

Sα,β(t) = δα,β

N
+

N−1∑
k,l=0

1 − δk+l,0 − δk+l,N

N2
exp

[
2π i(kα + lβ)

N

]
et (λ(k,l)+λ̃(k,l)). (27)

The probability distribution of the continuous-time quantum walks is given by the diagonal
elements of the reduced density matrix Pj (t) = Sj,j (t), that is

Pj (t) = 1

N
+

N−1∑
k,l=0

1 − δk+l,0 − δk+l,N

N2
exp

[
2π i(k + l)j

N

]
et (λ(k,l)+λ̃(k,l)). (28)

Now, we want to rewrite the above equation for odd and even values of m, respectively.

Odd m

The solution of equation (20) is

Pj (t) = 1

N
+

N−1∑
k,l=0

1 − δk+l,0 − δk+l,N

N2

[
δk,l e−� N−1

N
t + (1 − δk,l) e−� N−2

N
t
]

e
2π i(k+l)j

N

× exp

[
it sin

(
π(k + l)

N

)
cos

(
π(k − l)

N

)

+ imt sin

(
πm(k + l)

N

)
sin

(
πm(k − l)

N

)]
. (29)

for odd m.

Even m

The full solution of equation (20) is

Pj (t) = 1

N
+

N−1∑
k,l=0

1 − δk+l,0 − δk+l,N

N2
× e−� N−1

N
t × exp

[
2π i(k + l)j

N

]

× exp

[
it sin

(
π(k + l)

N

)
cos

(
π(k − l)

N

)

+ im+1t sin

(
πm(k + l)

N

)
sin

(
πm(k − l)

N

)]
. (30)

for even m.

6. Mixing time

To define the mixing time of continuous-time quantum walks, we use the principal motivation
to studying random walks. In computer science, the probabilistic algorithm provides the best
solution for many problems. Thus, the precise solution is obtained by a well-chosen sampling
distribution. Generating such a distribution is a matter of mapping the uniform distribution

7
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into the desired one. Hence, it is important to get a truly uniform distribution [37]. The mixing
time Tmix(ε) is defined as the number of steps needed before the distribution is guaranteed to
be ε-close to the uniform distribution, or

Tmix(ε) = min

⎧⎨
⎩T :

N−1∑
j=0

∣∣∣∣Pj (t) − 1

N

∣∣∣∣ � ε

⎫⎬
⎭ , (31)

where Pj (t) is the probability distribution of quantum walk on the node j of the graph G
and 1

N
is the uniform distribution over the graph G. Based on the above analysis, we will be

interested in decreasing the mixing time. Firstly, we want to calculate the upper bound on the
ε-uniform mixing time Tmix(ε) of equation (29)(for odd m). We define

Mj(t) = 1

N

N−1∑
k=0

exp

[
it sin

(
2πk

N

)
+ imt sin

(
2πkm

N

)]
e

2πikj

N . (32)

Hence, we have

M2
j

(
t

2

)
= 1

N2

N−1∑
k,l=0

etλ(k,l)e
2π i(k+l)j

N , M2j (t) = 1

N

N−1∑
k=0

etλ(k,k) e
2π ik(2j)

N .

Hence, equation (29) can be rewritten as∣∣∣∣Pj (t) − 1

N

∣∣∣∣ = e−� N−2
N

t

∣∣∣∣∣M2
j

(
t

2

)
− 1

N
+

e− �t
N − 1

N

[
M2j (t) − 2 − Nmod 2

N

]∣∣∣∣∣ . (33)

Since |Mj(t)| � 1, we obtain
∣∣∣∣Pj (t) − 1

N

∣∣∣∣ � e−� N−2
N

t

∣∣∣∣∣1 − 1

N
+

e− �t
N − 1

N

[
1 − 2 − Nmod 2

N

]∣∣∣∣∣ ,

� e−� N−2
N

t

∣∣∣∣∣1 +
e− �t

N − 1

N

(
1 − 2

N

)∣∣∣∣∣ . (34)

Based on the definition of time mixing,

N−1∑
j=0

∣∣∣∣Pj (t) − 1

N

∣∣∣∣ � e−� N−2
N

t (N + e
−t�
N − 1). (35)

Because of e− �t
N � 1 , the above equation reduces to Ne−� N−2

N
t � ε. As a result, we

obtain the mixing time upper bound of

Tmix(ε) <
1

�
ln

(
N

ε

) [
1 +

2

N − 2

]
. (36)

This relation is in agreement with the result that is mentioned in [30] for the cycle. Note
that in this case, the mixing time lower bound cannot derive equation (33) easily, since there
is a relation between M2

j ( t
2 ) and M2j (t). Now, we calculate the upper bound on Tmix(ε) of

equation (30)(for even m). We define

Mj(t) = 1

N2

N−1∑
k,l=0

exp

[
i
t

2

(
sin

(
2πk

N

)
+ sin

(
2πl

N

))]
e

2π i(k+l)j

N

× exp

[
−im+1 t

2

(
cos

(
2πkm

N

)
− cos

(
2πlm

N

))]
. (37)
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Thus, we have ∣∣∣∣Pj (t) − 1

N

∣∣∣∣ = e−� N−1
N

t

∣∣∣∣Mj(t) − 1

N

∣∣∣∣
� e−� N−1

N
t

[
1 +

1

N

]
(38)

and with summation over j and using the mixing time definition, we get Ne−� N−1
N

t � ε.
This gives the mixing time upper bound of

Tmix(ε) � 1

�

[
1 +

1

N − 1

]
ln

(
N

ε

)
. (39)

The lower bound of mixing time can be derived by the first equality of equation (38) as∣∣∣∣Pj (t) − 1

N

∣∣∣∣ = e−� N−1
N

t

∣∣∣∣Mj(t) − 1

N

∣∣∣∣
= 0 (40)

where in the last inequality, we set Mj(t) = 1
N

. In other words, in this time the quantum walk
completely reaches the uniform distribution 1

N
.

Thus, the lower bound of mixing time follows as

Tmix(ε) � 0. (41)

Equations (36) and (39) show that the Tmix upper bound is independent of the distance
parameter m. Moreover, since we approximated the coefficient of the exponential function in
equations (34) and (38), the mixing time upper bound is exactly proportional to 1

�
that accord

with Fedichkin, Solenov and Tamon’s result for the continuous-time quantum walks on cycles
[30]. Also, these relations prove that the mixing time upper bound for even m is smaller than
the mixing time upper bound for odd m.

7. Conclusion

We have studied continuous-time quantum walks on long-range interacting cycles (LRICs)
under small decoherence �N 	 1. We obtained the probability distribution analytically
and found that the mixing time upper bound for odd values of m (Tmix(ε) < 1

�
ln(N

ε
)[ N

N−2 ])
is larger than the mixing time upper bound for even m (Tmix(ε) � 1

�
ln(N

ε
)[ N

N−1 ]). These
relations show that the Tmix upper bound is inversely proportional to the decoherence rate �

and is independent of the distance parameter m. Also, we proved that for even m the lower
bound time mixing is zero. In other words, we have shown that Tmix(ε) decrease with � at
least as fast as 1/�.
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